Fast cross-validatory choice of wavelet smoothness, primary resolution and threshold in wavelet shrinkage using the Kovac-Silverman algorithm

نویسنده

  • Guy P. Nason
چکیده

This article introduces a fast cross-validation algorithm that performs wavelet shrinkage on data sets of arbitrary size and design and also simultaneously selects good values of the primary resolution and number of vanishing moments. We demonstrate the utility of our method by suggesting alternative estimates of the conditional mean of the well-known Ethanol data set. Our alternative estimates outperform the Kovac-Silverman method with a global variance estimate by 25% because of the careful selection of number of vanishing moments and primary resolution. Our alternative estimates are simpler than, and competitive with, results based on the Kovac-Silverman algorithm equipped with a local variance estimate. We include a detailed simulation study that illustrates how our cross-validation method successfully picks good values of the primary resolution and number of vanishing moments for unknown functions based on Walsh functions (to test the response to changing primary resolution) and piecewise polynomials with zero or one derivative (to test the response to function smoothness).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choice of wavelet smoothness, primary resolution and threshold in wavelet shrinkage

This article introduces a fast cross-validation algorithm that performs wavelet shrinkage on data sets of arbitrary size and irregular design and also simultaneously selects good values of the primary resolution and number of vanishing moments. We demonstrate the utility of our method by suggesting alternative estimates of the conditional mean of the well-known Ethanol data set. Our alternative...

متن کامل

Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold

In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...

متن کامل

Adapting to Unknown Smoothness via Wavelet Shrinkage

We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coe cients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computatio...

متن کامل

Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform

Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...

متن کامل

Wavelet shrinkage using cross - validation

Wavelets are orthonormal basis functions with special properties that show potential in many areas of mathematics and statistics. This article concentrates on the estimation of functions and images from noisy data using wavelet shrinkage. A modified form of twofold cross-validation is introduced to choose a threshold for wavelet shrinkage estimators operating on data sets of length a power of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999